

The grey eminences behind meet and join in some natural languages

DIP Colloquium, Sept. 12, 2014

Anna Szabolcsi
New York University
(ILLC in Fall 14)

- Some of the beautiful things we learn in our first logic class:

$$\cup \quad \vee \quad \exists \quad \text{(join)}$$

$$\cap \quad \wedge \quad \forall \quad \text{(meet)}$$

- Does natural language take note of these generalizations?

or *some[one/where]* (*a, an*)
and *every[one/where]* (*all*)

- Judging from English and other well-studied languages, no.

2

- Many other languages do better. E.g.,

	'A as well as B'	'everyone'
Japanese	A-mo B-mo	dare-mo
Malayalam	A-um B-um	aar-um
Sinhala	A-t B-t	kauru-t
Hungarian	mind A mind B	minden-ki
	'A or B'	'someone'
Japanese	A-ka B	dare-ka
Malayalam	A-oo B-oo	aar-oo
Sinhala	A-hari B-hari	kauru-hari
	A-də B-də	kau-də
Hungarian	A <i>vagy</i> B	vala-ki
Russian	A libo B	kto-libo

3

- Note the identity of the morphemes in the \vee/\exists and \wedge/\forall columns.

- The meanings match up better, too.

A-mo B-mo and its cross-linguistic brothers are strictly distributive conjunctions, exactly like *dare-mo* and *bros*.

A-ka B and its cross-linguistic brothers (so far as I know) are positive polarity items, exactly like *dare-ka* and *bros*.

- So, it seems that *-mo* is meet \cap , and *-ka* is join \cup . Similarly for *bros*.

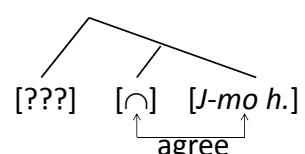
4

- But... in many of the cases the particles obligatorily occur on each conjunct/disjunct ("junct" for short). Recall:

Mal. A-*um* B-*um*, A-*oo* B-*oo*

Sin. A-*t* B-*t*, A-*hari* B-*hari* / A-*də* B-*də*

- Is this semantically significant? Or perhaps just syntactic agreement (concord)?


- Compare the Ladusaw/Zeijlstra view of negative concord and the Kratzer view of existential concord.

- How likely is it that null meet and join operators are syntactically present in the following examples, which have **just one junc+particle?**
Not very.

- *John-mo hasitta*

John-MO ran

'John, too, ran'

- *gakkoo-ni ik-imas-u ka?*

school-to go-polite-pres KA ditto

'(Are you) going to school?'

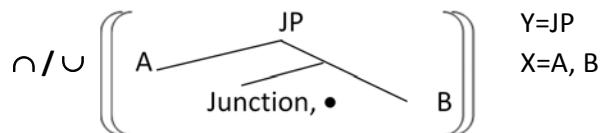
5

6

- Do “John, too, ran” and “Are you going to school?” contain the same *-mo* and *-ka* that occur in coordinations and quantifier words?
- I assume that **they are the same *-mo* and *-ka***. Cf.
 - *Italy, too, surrounds CH* \approx “Italy surrounds CH and something else surrounds CH” (false) [irrevocably propositional, i.e. **distributive**]
 - *Are you going?* \approx “You are going or you are not going” (not a tautology) [inquisitive, i.e. **issue-raising**]

7

Proposal


- At least in these languages, \cap and \cup are disembodied operations. No particle or connective “expresses” them.
- The particles are semantic, not syntactic, pointers to \cap and \cup .
NB Words like *and* are not pointers to \cap .
- Each occurrence of the particle is meaningful and does the same thing. When multiple particles co-occur, they work together.
- (There are various other particles; those point to other disembodied operations.)

8

- Terminology: Capital KA and MO are generic labels, not specifically Japanese particles.
- A “semantic pointer” is something that imposes a semantic requirement.
Suppose X-KA / X-MO occurs in some “immediately larger” Y (= sentence-internal, textual, or conversational context).
[[·]] is inquisitive and informative content.
KA requires $[[X]] < [[Y]]$.
MO requires $[[Y]] < [[X]]$.

9

Fleshing out some details. Treatment of coordination partially based on Winter (1995, 1998) and den Dikken (2006).

- Words like *and*, if present, spell out Junction, •.
- By default, \cap applies to the pair $\langle A, B \rangle$.
- MOs on A and B prevent the collective shift from applying to $[[A]] \cap [[B]]$, via MO's $[[Y]] < [[X]]$ rqrmt.
- KAs on A and B bleed default \cap , via KA's $[[X]] < [[Y]]$ requirement, and so \cup applies.

10

- If the set of alternatives is computed from an **open proposition** (cf. quantified sentences and wh-questions), then the default is \cup . Overt MO is required to bleed \cup and trigger \cap .
- A **default** operation is one that kicks in even when no overt marker is present. Cross-linguistically,
 - conjunctions are often unmarked (have no connective), but disjunctions always have KA-particles, and
 - indefinites and wh-questions are often unmarked (no Q-particle), but universal quantifiers always have MO-particles.

11

- Unmarked (asyndetic) conjunction:
Kati, Mari elaludt. ‘Kate and Mary fell asleep’
A man walks in the park. He whistles.
- Unmarked (asyndetic) disjunction, unattested.
~~Kate Mary fell asleep.~~ # ‘Kate or Mary fell asleep’
- Unmarked indefinite/wh-question word:
Wer mag **was**? ‘Who likes **what/something**?’
- Unmarked universal quantifier, unattested:
~~John likes whom.~~ # ‘John likes everyone’

See further https://files.nyu.edu/as109/public/szabolcsi_esslli2014/.

12